dataholz.eu - Bibliothek für Bauteile, Bauteilfügungen und Referenzprojekte

Maren Kohaus Dipl.-Ing. Architektin Technische Universität München Fakultät für Architektur München, Deutschland

dataholz.eu – Bibliothek für Bauteile, Bauteilfügungen und Referenzprojekte | M. Kohaus

dataholz.eu - Bibliothek für Bauteile, Bauteilfügungen und Referenzprojekte

dataholz.eu1

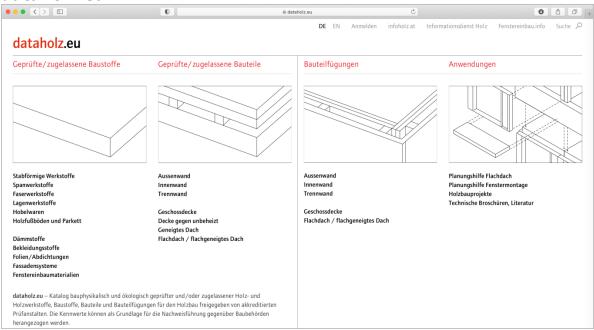


Abbildung 1: Darstellung der Startseite, www.dataholz.eu, Stand 09.07.2021

Ausgangssituation 1.

1.1. Anlass

Der Holzbau – insbesondere der mehrgeschossige Holzbau – hat sich in den europäischen Ländern in den vergangenen Jahren zu einer hochleistungsfähigen Bauweise entwickelt und gewinnt zusehends weiter an Bedeutung. Eine ausserordentliche Produkt- und Konstruktionsvielfalt über die unterschiedlichen Bauweisen, wie Holztafel-, Holzskelett- und Holzmassivbau bietet den Planern und ausführenden Firmen aktuell jedoch auch eine derart grosse Variantenvielfalt, dass sich dies für eine intensive Marktdurchdringung in Verbindung mit der vielschichtigen Verknüpfung von Leistungsnachweisen als hinderlich herausstellt. Für sämtliche Varianten müssen zur Planungs- und Genehmigungssicherheit sowie zur Bauwerkserstellung baurechtliche Verwendbarkeitsnachweise und Leistungsnachweise für Bauphysik, Brandschutz und Tragwerk vorliegen. Hierfür ist eine Vielzahl an Produktregelungen auf Basis nationaler und europäischer Normen und Zulassungen zu beachten.

Zur Lösung dieser Situation wurde im Nachbarland Osterreich 2004 durch die Holzforschung Austria (HFA) ein interaktiver Bauteilkatalog mit nahezu 1.500 Holzkonstruktionen und Bauteilanschlüssen entwickelt, deren nationale Verwendbarkeitsnachweise durch akkreditierte Prüfstellen erstellt und durch die HFA auf der Plattform dataholz.com öffentlich und kostenfrei zur Verfügung gestellt wurden.

 $^{^{1}}$ Auszüge aus dem Abschlussbericht zum Forschungsprojekt: dataholz.de – Anpassung des österreichischen Kataloges geprüfter Holzbauteile www.dataholz.com auf die Rahmenbedingungen in Deutschland, Erstellen einer Plattform mit in Deutschland baurechtlich verwendbaren Bauteilaufbauten www.dataholz.de. Gefördert von: Deutschen Bundesstiftung Umwelt DBU. Forschungsstelle: Technische Universität München, Ingenieurfakultät Bau Geo Umwelt und Fakultät für Architektur, Lehrstuhl für Holzbau und Baukonstruktion, Prof. Dr.-Ing. Stefan Winter, Professur für Entwerfen und Holzbau, Prof. Hermann Kaufmann; Informationen unter www.dataholz.eu

Die österreichischen Behörden erkennen eine Zitation dieser Nachweise als bauaufsichtlichen Verwendbarkeitsnachweis im baurechtlichen Genehmigungsverfahren an. Eine derartige Informationsquelle war bis jetzt in Deutschland noch nicht vorhanden.

Im Rahmen von «dataholz.de» wurde dieses Prinzip auf die in Deutschland geltenden Rahmenbedingungen übertragen. Hierzu wurden für häufig verwendete Konstruktionsvarianten Angaben zu Bauphysik (Wärme-, Schall- und Feuchteschutz) sowie Brandschutz und ökologische Kenndaten erarbeitet und digital auf der interaktiven Plattform «dataholz.eu» kostenfrei zur Verfügung gestellt. Die Bauteile wurden hinsichtlich ihrer Leistungseigenschaften beurteilt und nationale baurechtliche Verwendbarkeitsnachweise u.a. in Zusammenarbeit mit externen Spezialisten und akkreditierten Prüfanstalten erarbeitet, um eine direkte Anwendbarkeit zu gewährleisten. Bauteilanschlüsse und Bauteilfügungen, ergänzt durch technische Konstruktionsgrundlagen, erweitern die Plattform zu einem umfangreichen Werkzeug für Planer und Ausführende im Holzbau. Spezifisch ausgewählte Referenzbauwerke mit Grundrissen, Schnitten und Details sowie grundlegenden Informationen zu Abmessungen, Kosten und Projektbeteiligten vervollständigen die neue Online Plattform.

Durch «dataholz.eu» wird eine Standardisierung erreicht, die zu einer gesteigerten Übersichtlichkeit, Planungssicherung und Kalkulierbarkeit von Holzbauten führt. Häufig wiederholende, objektbezogene Diskussionen und Problemstellungen werden einheitlich gelöst und ermöglichen hierdurch einen erheblichen Zeitgewinn im Planungs-, Genehmigungs- und Ausführungsprozess. Für versierte als auch neue Anwender wurde durch die Onlineplattform ein praxisorientiertes Informationsangebot zur Realisierung von Holzbauwerken geschaffen. Dadurch soll die Akzeptanz des Baustoffes Holz bei Bauherren, Investoren, Planern und Behörden steigern und eine erhebliche Verbesserung der Wettbewerbsfähigkeit gegenüber alternativen Baustoffen bewirken. Durch die erleichterte Anwendung wird ein steigender Marktanteil des ökologischen und nachhaltigen Rohstoffes Holz in Deutschland erwartet. Im Zuge der fortschreitenden Digitalisierung beim Bauen wird für die Zukunft die BIM-tauglichkeit im Sinn einer Bauteilbibliothek angestrebt.

1.2. Die Plattform dataholz.eu

Der Name des Forschungsprojektes «dataholz.de» soll die Anwendbarkeit der zukünftigen Plattform in Deutschland hervorheben. Das Ergebnis des Gemeinschaftsprojektes zwischen der Technischen Universität München und Holzforschung Austria stellt aber nicht zwei unterschiedliche Plattformen dar, sondern vielmehr eine länderübergreifende Plattform mit komplett überarbeitetem Layout, die ausgehend von Deutschland und Österreich im europäischen Raum eine hohe Akzeptanz erreichen soll. Der Name wurde aus diesen Gründen von ursprünglich dataholz.com auf dataholz.eu abgeändert. Dabei teilt sich die Plattform in folgende vier Bereiche auf:

- Geprüfte / zugelassene Baustoffe
- Geprüfte / zugelassene Bauteile
- Bauteilfügungen
- Anwendung / Referenzprojekte

Im Rahmen dieses Forschungsprojektes wurde der Bereich «Bauteile», «Bauteilfügungen» und «Anwendung» auf die deutschen Rahmenbedingungen angepasst.

Der Bereich «Baustoffe» enthält europäisch harmonisierte und herstellerspezifische Baustoffe, die entsprechend in Deutschland verwendet werden können. Der Abschnitt «Geprüfte / zugelassene Bauteile» wurde aufgrund der baurechtlichen Diskrepanz zwischen den Ländern durch nationale Nachweisdokumente und somit einer Anwendung für Deutschland überarbeitet und durch die Ergänzung neuer Aufbauten aktualisiert.

Der Bereich «Bauteilfügungen» wurde länderübergreifend aktualisiert und durch für die Praxis relevante Anschlüsse inklusive technischer Hinweise ergänzt.

Abschliessend steht dem Nutzer unter «Anwendung» ein komplett neu erarbeiteter Teil mit realisierten «Referenzprojekten» inklusive projektspezifischer Daten und Darstellungen zum Montageablauf zur Verfügung. Durch weitere Verlinkungen auf aktuell gültige technische Dokumentationen wird dem Anwender ein Informationsangebot zu holzbauspezifischen Lösungen angeboten.

Bauteile 2.

2.1. Grundlagen

Die bestehende Plattform dataholz.com hat sich seit deren Einführung 2004 stetig weiterentwickelt. Fortlaufend wurden neue Bauteile ergänzt, um einen sehr grossen Anteil aller in Österreich gebräuchlichen Holzbaukonstruktionen abzudecken. Praktisch häufig benötigt und angewendet wird von dieser Anzahl naturgemäss nur ein Bruchteil.

Aus diesem Sachverhalt ergibt sich, dass es für eine sinnvolle Anwendbarkeit von dataholz in Deutschland nicht erforderlich ist, alle Bauteile mit in Deutschland gültigen baurechtlichen Verwendbarkeitsnachweisen auszustatten. Diese Überlegung ist gerade auch vor dem Hintergrund relevant, dass die Erstellung von in Deutschland gültigen Verwendbarkeitsnachweisen mit einem hohen Aufwand verbunden ist.

Ein Ziel des Projektes lag daher darin, sich zunächst auf die wichtigsten und am Häufigsten nachgefragten Bauteile zu beschränken. Durch die gezielte Bauteilauswahl und die enge Abstimmung mit dem Projektbeirat wird dem praktischen Anwender ein Portfolio von in Deutschland üblichen Bauteilen zur Verfügung gestellt.

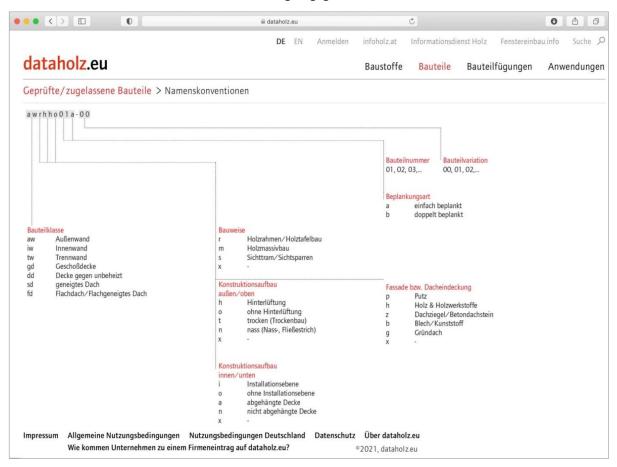


Abbildung 2: Darstellung der Übersicht der Nomenklatur, Stand 09.07.2021

Die im vorgenannten Prozess ausgewählten Bauteile wurden auf der Plattform dataholz.eu implementiert und nach «Wände», «Decken», «Geneigtes Dach» und «Flachdach» und dazugehörigen Unterkategorien z. B. Aussen-, Innen- und Trennwände und Geschossdecken, usw. kategorisiert. Die Kategorien basieren auf der bestehenden Systematik von dataholz in Österreich und wurde im Rahmen der Projektbearbeitung aktualisiert. Somit konnten die bestehenden Bauteile eingruppiert und die Nomenklatur, die die Gliederung widerspiegelt, grösstenteils beibehalten werden. Unterschiedliche Materialien und Dicken führen zu identischen Bauteilen hinsichtlich des Schichtenaufbaus. Aus diesem Grund wird in dataholz zwischen Bauteil und Bauteilvariante unterschieden. Zu jedem Bauteil gibt es unterschiedliche Varianten, die hinsichtlich des Dämmmaterials und ihrer Schichtdicken variieren und folglich auch andere brandschutztechnische und bauphysikalische Leistungseigenschaften besitzen. Durch die Filterfunktion können Untervarianten mit spezifischen Eigenschaften ausgewählt werden; die nicht der Auswahl entsprechenden Varianten werden grau hinterlegt.

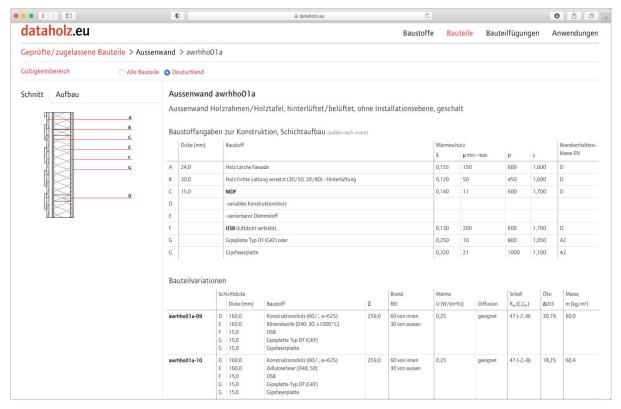


Abbildung 3: Darstellung der Bauteilvariante mit Untervarianten, www.dataholz.eu, Stand 09.07.2021

2.2. Anforderungen an die Bauteile

Eine Plattform wie dataholz kann nicht den objektspezifischen Gesamtnachweis zur Verfügung stellen, sondern soll dem Planer und Ausführenden Bauteilnachweise zur Verfügung stellen, die in den Gesamtnachweis implementiert werden können. Aus dem Gesamtnachweis, z.B. dem Nachweis der Standsicherheit oder dem Brandschutznachweis resultierend die geforderten Leistungseigenschaften der Einzelbauteile wie z.B. Wände, Decken, die auf einer Plattform wie dataholz zur Verfügung stehen.

In dataholz werden pro Bauteil die Leistungseigenschaften Brand, Schall, Wärme und Ökodaten dargestellt, die baurechtlich in privatrechtliche und bauaufsichtlich einzuhaltende Anforderungen aufgeteilt werden. Abhängig davon ergibt sich der notwendige Nachweis zur Bestätigung der Leistungseigenschaft für den Planer oder Ausführenden. Die Bauregellisten und Liste der eingeführten Technischen Baubestimmungen, bzw. die Musterverwaltungsvorschrift Technische Baubestimmungen regelt hierzu, welche technischen Baubestimmungen eingeführt sind und welcher Nachweise zu erbringen ist, falls keine technischen Regeln zur Verfügung stehen.

3. Referenzprojekte

3.1. Allgemeines

Die Idee des Forschungsantrages dem Nutzer einen direkten Bezug zu realisierten Projekten in Holzbauweise aufzuzeigen, wurde aufgegriffen und hinterfragt. Daraus resultiert die Annahme, dass der direkte Bezug zur Praxis am deutlichsten durch die Darstellung anhand der Zeichnungen des ausführenden Holzbauunternehmens zu vermitteln ist. Abweichend von

anderen «Best Practice Plattformen», wurde vorgeschlagen, keine sogenannten «Leuchtturmprojekte», zu zeigen, die in der Regel Sonderlösungen im Detail beinhalten, sondern sogenannte «Schwarzbrotprojekte», die in der Praxis am häufigsten realisiert werden.

Der Fokus liegt hier auf einer vertieften Darstellung der relevanten Detailanschlüsse. Basis der Zeichnungen soll nicht die Architektenzeichnung sein, die häufig nicht der Realisierung entspricht, sondern eine neu aufbereitete Zeichnung in der Detailtiefe eines Architektendetails, jedoch basierend auf der Holzbauplanung. Für die Erstellung der Details wurden bei jedem Projekt eine intensive Recherche des tatsächlichen Montageablaufs durchgeführt.

Derzeit sind 15 Projekte mit textlicher Erläuterung, Fotos, 2D Zeichnungen und 3 Detailanschlüssen sowie der jeweils zugehörigen 3D Grafik auf der Plattform abgebildet.

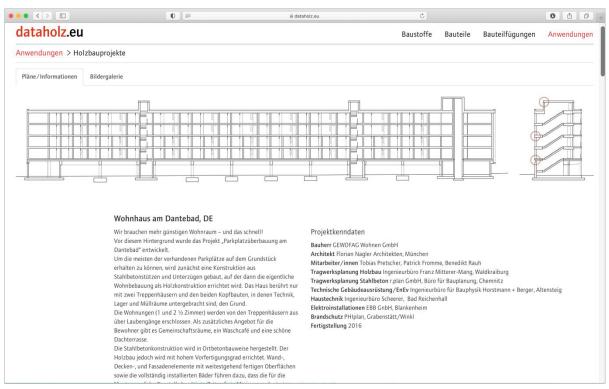


Abbildung 4: Darstellung der Startseite eines Holzbauprojekts mit Erläuterungen, www.dataholz.eu, Stand 09.07.2021

3.2. Projektauswahl

Bevor eine Auswahl von Projekten getroffen werden konnte, wurden Kriterien festgelegt, die für alle Projekte gleichermassen gelten sollten. Hervorzuheben ist das Kriterium der Konformität mit den Bauteilen aus dataholz.eu. Es muss jedoch einschränkend festgestellt werden, dass Projekte exakt mit Details gemäss den Aufbauten aus dataholz.eu und der Erfüllung der übrigen Kriterien kaum zu finden sind.

Die Auswahlkriterien im Einzelnen:

- Weitgehende Konformität der Bauteilaufbauten mit dataholz.eu
- Standardlösungen, keine Sonderkonstruktionen
- Keine Bauweisen, die in dataholz.eu nicht enthalten sind, z. B. Hybridbauweisen
- Projekte aus dem Gültigkeitsbereich von dataholz.eu, also A und D
- Hohe architektonische Qualität
- Mehrgeschossige Gebäude, jedoch keine Einfamilienhäuser

3.3. Inhalt und Darstellung

Jedes Referenzprojekt wird anhand eines Lageplans, Grundriss EG, einem Schnitt und einer Projektbeschreibung beschrieben und dargestellt. Vertiefte Information bieten die jeweiligen Projektkennwerte zum Gebäude: neben Angaben zu den ausführenden Firmen, den Baukosten und der Bauzeit werden technische Kenndaten (z.B. BGF, BRI, U-Werte...), Angaben zur jeweiligen Bauweise und Angaben zur Tragwerkskonzeption gemacht.

Im Weiteren erfolgen zeichnerische und textliche Angaben zur Detailausführung bzw. Bauteilfügung im Bereich Attika, Wand-Decke-Wand und Sockel des jeweiligen Projekts: Das jeweilige Detail wird zunächst als 2D-Grafik dargestellt. Neben der Beschriftung der unterschiedlichen Materialien werden die jeweiligen Fügungen stichpunktartig in ihrer Ausführung beschrieben um den Aufbau der Gebäudehülle/ der Geschossdecke oder des Dachaufbaus zu verdeutlichen. Das Bedienmenü sieht an dieser Stelle eine direkte Verlinkung mit dem entsprechenden oder vergleichbaren Bauteil der Bauteilsammlung dataholz.eu vor.

Über einen weiteren Reiter kann der Anwender den 3D Aufbau / Montageablauf aufrufen. Hier wird mittels einer isometrischen Explosionszeichnung der Montageablauf erläutert und der jeweilige Vorfertigungsgrad verdeutlicht.

Die 2D und 3D Zeichnungen wurden auf Grundlage der Werk-und Detailplanung der jeweiligen Architekten bearbeitet. Gleichzeitig wurde die Werkstattplanung der ausführenden Firma hinzugezogen, um die tatsächliche Ausführung und den jeweiligen Vorfertigungsgrad und den Montageablauf zu verifizieren.

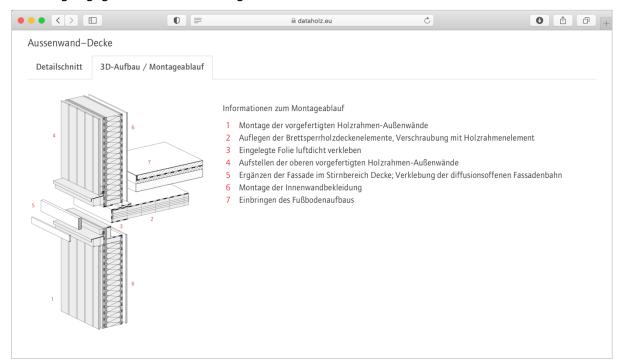


Abbildung 5: Darstellung eines Detailpunktes mit Montageablauf, www.dataholz.eu, Stand 09.07.2021

4. Bauteilfügungen

4.1. Anwendung

Die Rubrik «Bauteilfügungen» der Online-Datenbank zeigt typische Fügepunkte von exemplarisch ausgewählten Bauteilen der Datenbank im Massstab 1:10. Durch die gewählte zeichnerische und grafische Darstellung sowie die textlichen Hinweise, aufgeteilt in «Anmerkungen» und «Leistungseigenschaften», ist beispielhaft ersichtlich, worauf bei der Fügung zu achten ist, um die Kontinuität des Schichtenverlaufs im Fügepunkt zu wahren.

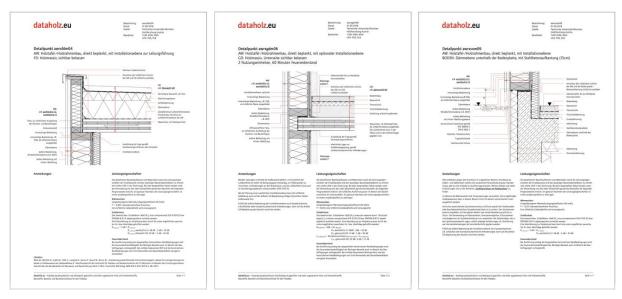


Abbildung 6: Beispielhafte Darstellung der Datenblätter mit Grafik, textlichen Anmerkungen (unten links) und den Leistungseigenschaften (unten rechts), siehe hierzu auch Abb. 11, www.dataholz.eu, Stand 23.08.2019

Mit Hilfe eines Filters erfolgt die Eingrenzung von Bauteilkombinationen. Der Detailname gibt gemäss der Nomenklatur (Abb.2) Aufschluss über die Konstruktionsart der gefügten Bauteile. «awr x gdm» bedeutet, dass es sich um einen Fügepunkt mit einer Aussenwand in Holzrahmenbauweise und einer Geschossdecke aus Massivholz handelt.

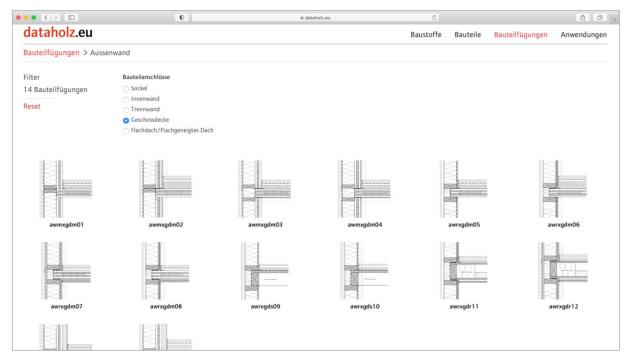


Abbildung 7: Darstellung der Übersicht mit Filteroptionen, www.dataholz.eu, Stand 09.07.2021; Die grafische Darstellung der Icons und der Detailname geben Aufschluss über die Konstruktionsart der Bauteile.

Das Konzept für die Erstellung der Bauteilfügungen und der Datenblätter ist an der Technischen Universität München, Professur Entwerfen und Holzbau, Prof. Hermann Kaufmann (Fakultät für Architektur) entwickelt worden und gemeinsam mit den anderen Projektbeteiligten – der Holzforschung Austria und dem Lehrstuhl für Holzbau und Baukonstruktion, Prof. Stefan Winter (Fakultät Bau Geo Umwelt) - im Laufe der Projektlaufzeit inhaltlich immer wieder abgeglichen worden.

In einem «Praktikerworkshop» haben Beiratsmitglieder des Forschungsprojektes praxisrelevante Hinweise gegeben, die in die finalen Datenblätter der Fügepunkte mit eingeflossen sind. Die Bewertung der einzelnen bauphysikalischen Leistungsnachweise erfolgte am Lehrstuhl von Prof. Stefan Winter.

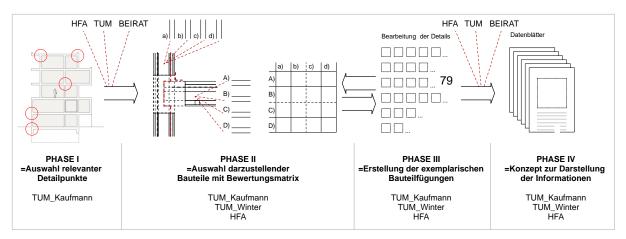


Abbildung 8: Überblick über den Erstellungsprozess der Datenblätter und der beteiligten Institutionen Quelle: Forschungsbericht «dataholz.de», Grafik: M.Kohaus

4.2. Dargestellte Detailpunkte

Die folgenden Detailpunkte (Abb.9), sind im Rahmen des Forschungsprojektes für die Darstellung innerhalb der Bauteilfügungen ausgewählt worden:

- Einbindung der Geschossdecke in die Aussenwand (AW+GD)
- Aussenwand + Trennwand (AW+TW)
- Aussenwand + Innenwand (AW+IW)
- Trennwand + Geschossdecke (TW+GD)
- Innenwand + Geschossdecke (IW+GD)
- Attika (AW+FD)
- Sockel (AW+Boden)

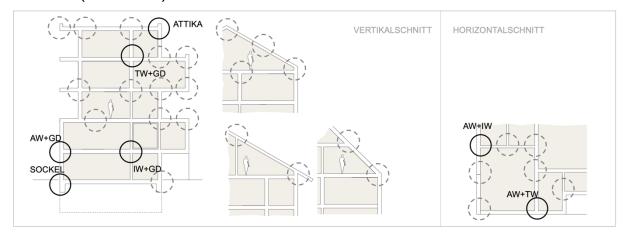


Abbildung 9: Ausgewählte (schwarz) und zukünftig noch zu bearbeitende Detailpunkte (grau) in Schnitt und Grundriss, Quelle: Forschungsbericht «dataholz.de», Grafik: M.Kohaus

Für vorstehende Detailpunkte wurde ein Konzept entwickelt, welche Bauteilaufbauten der Datenbank in welchen Kombinationen in welcher Detailtiefe dargestellt werden. Die in der Grafik grau dargestellten Detailpunkte sollen zum Teil zu einem späteren Zeitpunkt in die Plattform eingearbeitet werden.

4.3. Auswahl darzustellender Bauteile

In der Online-Datenbank soll mit den ausgewählten Bauteilfügungen didaktisch aufgezeigt werden, welche Bauteilkombinationen üblich sind und nach welchen Kriterien eine Bauteilauswahl bei der Planung eines Projektes erfolgen kann.

Für jeden Detailpunkt wurde eine Matrix erstellt (Abb.9), die ausgewählte Bauteilkombinationen aufzeigt. Analog zu den Filtermöglichkeiten der Datenbank wurde stets zwischen Massivholzbauteilen und zwischengedämmten Bauteilen (Holztafelbauweise / Rahmenbau-weise) unterschieden.

DETAILPUNKT AW-GD =EINBINDUNG DER GESCHOSSDECKE IN DIE AUSSENWAND			AW_HOLZMASSIVBAU			AW_HOLZTAFEL-/RAHMENBAU		
				GD_MASSIVHOLZBAU	GD_Massiv sicht	awm x gdm 01 awmoho03a-00 + gdmnxn02-04	awm x gdm 02 awmoho03a-04 (opt. mit Inst.) + gdmnxn03-00	awm x gdm 14 awmohi02a-04 + gdmnxn03-00
GD_direkt beplankt	awm x gdm 03 awmoho03a-00 + gdmnxn01a-00 +Abhangvariante	awm x gdm 04 awmoho03a-04 (opt. mit Inst.) + gdmnxn01a-00 +Abhangvariante			awm x gdm 13 awmohi02a-04 + gdmnxn01a-00 +Abhangvariante			
GD_Massiv mit Abhang.							awr x gdm 07 awrhho04b-09 + gdmnxn02b-00	awr x gdm 08 awrhho01a-12 (opt. mit Inst.) + gdmnxn02b-00
	GD_HOLZTAFEL-/RAHMENBAU	GD_Balken sicht				awr x gds 09 awrhho05a-11 + gdstxx01-00		awr x gds 10 awrhho05a-11 (mit opt. Inst.) + gdstxx01-00
		GD_direkt beplankt						
		GD_Balken mit Abhang.					awr x gdr 11 awrhho01a-12 + gdrnxa07b-04	awr x gdr 12 awrhho04b-09 (mit opt. Inst.) + gdrnxa07b-13

Abbildung 10: Überblick über die Auswahl der Bauteile (Holzmassivbau und Holztafel-/Rahmenbau) in den jeweiligen Fügedetails für den Detailpunkt AW-GD, Quelle: Forschungsbericht «dataholz.de», Grafik: M.Kohaus

Um in den Bauteilkombinationen unterschiedliche bauphysikalische (z.B. Brandschutz, Schallschutz, Feuchteschutz, Luftdichtheit), baupraktische (Auflagersituation, Leitungsführung, Montageprozess) und/oder auch ästhetische Anforderungen (Oberflächenmaterialität, Detaillierung) zu berücksichtigen, wurden für jeden ausgewählten Detailpunkt exemplarische Bauteile mit den folgenden Kriterien ausgewählt:

- sichtbar belassene Holzbauteile/Konstruktion
- Bauteile mit direkten Beplankungen (z.B. um Oberflächenbeschaffenheiten und/oder Kapselkriterien, variieren zu können)
- Bauteile mit zusätzlicher, bzw. optionaler Installationsebene zur Leitungsführung

Um die Übertragbarkeit auf eine Vielzahl von Projekten zu ermöglichen, wurden Bauteilkombinationen mit unterschiedlichen ökonomischen und bauphysikalischen Anforderungen ausgewählt und eingeteilt in:

- «kostengünstigere» Bauteilkombinationen (z.B. für 1-2 Nutzungseinheiten, mit geringeren Schall- und Brandschutzanforderungen)
- «höherwertigere» Bauteilkombinationen (z.B. für mehrere Nutzungseinheiten, in einer höheren «Gebäudeklasse», mit höheren Schall- und Brandschutzanforderungen)

«hochwertige» Bauteilkombinationen (z.B. für mehrere Nutzungseinheiten, in einer höheren Gebäudeklasse mit hohe Schallund Brandschutzanforderungen, sowie z.B. zusätzlichen Installationsebenen für eine verdeckte Leitungsführung)

Für jeden Detailpunkt wurden somit 9-14 unterschiedliche Bauteilkombinationen ausgewählt, so dass insgesamt 79 Bauteilfügungen ausgearbeitet wurden:

-AW+GD: 14 Varianten -AW+TW: 13 Varianten -AW+IW: 13 Varianten -TW+GD: 9 Varianten -IW+GD: 10 Varianten -Attika: 10 Varianten -Sockel: 10 Varianten

=insgesamt 79 Bauteilfügungen

Diese Vielzahl von Varianten zeigt ein breites Anwendungsspektrum und gibt in der vergleichenden Darstellungsweise dem Anwender die Möglichkeit baupraktische Besonderheiten (z.B. Verminderung der Flankenübertragung durch Elastomerlager und z.B. Ausführungsart der luftdichten Ebene) zu erkennen, nachzuvollziehen und auf das eigene Projekt zu übertragen.

Prämisse für die Bauteilauswahl war, dass Bauteile in mehreren Detailpunkten Verwendung finden sollten, und in den relevanten Fügepunkten, wie z.B. bei dem Verlauf der Gebäudehülle mit den Detailpunkten «Attika», «Einbindung der Geschossdecke» und «Sockel», mit denselben Bauteilen nachvollziehbar dargestellt werden (Abb.4 und Abb.6). In einem iterativen Prozess wurden die Beiträge der projektbeteiligten Institutionen der TUM, der Holzforschung Austria und den Experten des Projektbeirats immer wieder zusammengeführt, abgestimmt und in die Details eingearbeitet (Abb.8).

Die für jeden Detailpunkt erstellten Bewertungsmatrizen (Abb.9) mit Angabe der ausgewählten Bauteile, sowie die dazugehörende grafische Übersicht (Abb.10) ist im Forschungsbericht einsehbar².

²Abschlussbericht Forschungsprojekt «dataholz.de»: https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-32350_02-Hauptbericht.pdf

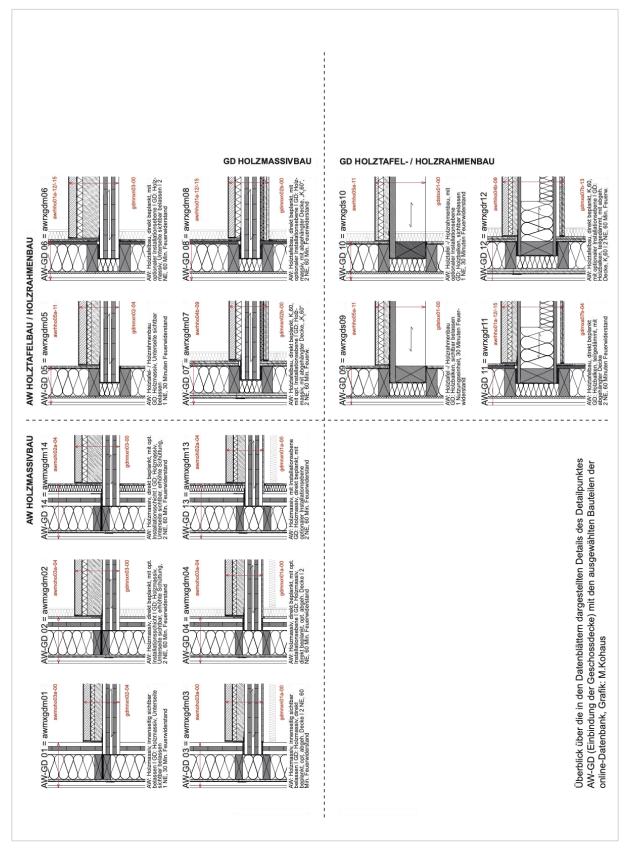
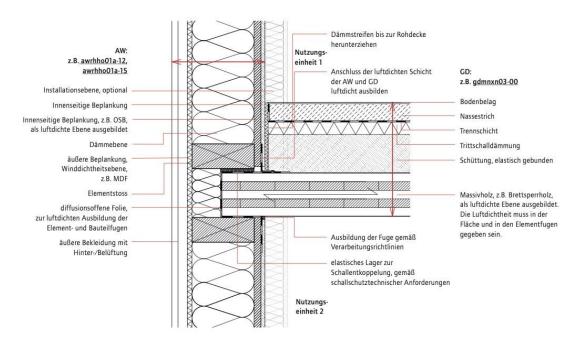


Abbildung 11: Um praxisrelevante Bauteilfügungen darzustellen, wurden primär Bauteilfügungen gewählt, die im mehrgeschossigen Holzbau angewendet werden können. Aus diesem Grund wurden z.B. Kombinationen von «Balkendecken/Holztafelbau» mit massiven Holzwänden nicht näher betrachtet, sondern vermehrt Varianten mit Massivholzdecken dargestellt, Quelle: Forschungsbericht «dataholz.de»

dataholz.eu

Bezeichnung: awrxgdm06 Stand: 01.09.2018

Quelle: Technische Universität München


Holzforschung Austria
Bearbeiter: TUM: KOM, WEN
HFA: POS, PLB

Detailpunkt awrxgdm06

AW: Holztafel-/Holzrahmenbau, direkt beplankt, mit optionaler Installationsebene

GD: Holzmassiv, Unterseite sichtbar belassen

2 Nutzungseinheiten, 60 Minuten Feuerwiderstand

Anmerkungen

Werden Leitungen innerhalb der Außenwand geführt, ist hinsichtlich der Luftdichtheit ein hoher Vorfertigungsgrad notwendig, um Fehlerquellen zu minimieren. Anforderungen an den Brandschutz und die Luftdichtheit sind auch im Durchdringungsbereich sicherzustellen (DIN 4102-4).

Bei der Planung einer zusätzlichen Installationsebene kann die luftdichte Abklebung auch auf der äußeren GK-Beplankung erfolgen (Anschluss Decke/ Außenwand OG).

Erfüllt die äußere Beplankung der Installationsebene auch bauphysikalische, z.B.luftdichte oder brandschutztechnische Anforderungen, kann auf die direkte GK-Beplankung des Bauteils verzichtet werden.

Leistungseigenschaften

Die detaillierten Bauteilaufbauten und Materialien sowie die Leistungseigenschaften der Einzelbauteile sind den jeweiligen Bauteildatenblättern zu entnehmen (siehe LINK in der Zeichnung). Bei dem dargestellten Detail werden unter der Verwendung von den oben beispielhaft genannten Bauteilen die folgenden Prognosewerte erreicht. Die luftdichte Ausführung auch im Bereich der Bauteilanschlüsse ist sicherzustellen. Ein genauer Nachweis der Leistungseigenschaften ist immer projektspezifisch zu erbringen.

Wärmeschutz

Längenbezogener Wärmedurchgangskoeffizient (W/(mK)) Ψ = 0,033; eine luftdichte Gebäudehülle wird vorausgesetzt.

Schallschutz

Das bewerte Bau- Schalldämm- Maß (R'w) sowie der bewerte Norm- Trittschallpegel ($L^i_{n,w}$) müssen entsprechend DIN 4109-02 bzw. ÖNORM B 8115 objektspezifisch ermittelt werden. Eine Abschätzung zur Vorplanung kann durch die unten angeführten pauschalen Zu- bzw. Abschläge getroffen werden.

 $R_{w \, (Bauteil)} - 5dB = R'_{w \, (Bauteil)}$

R'w awrhho01a-12: 48dB - 5dB = 43 dB R'w gdmnxn03-00: 74 dB - 5 dB = 69 dB F Korrektursummand (INFO Holz Heft) = L'n.w (Bauteil)

 $L_{n,w\,(Bauteil)} + Korrektursummand_{\,(INFO\,Holz\,Heft)} = L'_{n,w\,(Bauteil)} \\ L'_{n,w}\,gdmnxn03-00:\,45\,dB + \,6\,dB = \,51\,dB$

Feuerwiderstand

Bei Ausführung analog der dargestellten konstruktiven Randbedingungen wird die Feuerwiderstandsfähigkeit der flächigen Bauteile auch im Bereich der Bauteilfügungen sichergestellt. Bei sichtbar belassenem Brettsperrholz sind die konstruktiven Randbedingungen zum Schichtenaufbau der Bauteildatenblätter zwingend einzuhalten.

dataholz.eu – Katalog bauphysikalisch und ökologisch geprüfter und/oder zugelassener Holz und Holzwerkstoffe, Baustoffe, Bauteile und Bauteilanschlüsse für den Holzbau Seite 1/2

4.4. Inhaltliche und grafische Umsetzung

Themenbereiche, die nicht explizit für die Fügungen von Holzbauteilen relevant sind, wie z.B. exakte Spenglerdetails oder Ausführungsarten von Unterkonstruktionen etc., werden in den Datenblättern nicht vertieft gezeigt. Gleiches gilt auch für die Materialisierung der Fassadenbekleidung. Diese wird in den Details grafisch lediglich abstrakt dargestellt, um die Materialisierungsart offen zu lassen und auch andere Ausführungsarten zu ermöglichen. Folgende Informationen werden in den Datenblättern der Bauteilfügungen gegeben (Abb.11):

- Zweidimensionale Zeichnung, M1:10 mit Angabe der exemplarisch dargestellten Bauteile (mit direkter Verlinkung zur Datenbank) und Benennung der Bauteilschichten grafisch hervorgehobener, kontinuierlicher Verlauf der funktionalen Schichten
- Darstellung des Montageprozesses unter Annahme eines möglichst hohen Vorfertigungsgrades der gewählten Bauteile, wie z.B. bei der Überlappung von Folien, die Art der Abklebungen und Elementierungen einzelner Bauteilschichten ersichtlich. Da es sich jedoch nur um eine mögliche Art des Montageprozesses handelt, die sich projektspezifisch durchaus verändern kann, wurde bei den Bauteilfügungen keine zusätzliche dreidimensionale Sprengzeichnung mehr hinzugefügt. Dieser Aspekt des Vorfertigungsgrades und der damit zusammenhängenden Montagereihenfolge wird in den Referenzprojekten, an konkret ausgeführten Beispielen, visualisiert (Abb.5).
- Textliche «Anmerkungen», die auf Besonderheiten der Fügung hinweisen
- Angabe einer bauphysikalischen Bewertung des Fügepunktes hinsichtlich Wärme-, Schall-, Brandschutz in den «Leistungseigenschaften». Ziel ist es dem Anwender den Einfluss der Fugen und der konstruktiven Elemente auf die Leistungsfähigkeit der flächigen Bauteile aufzuzeigen und so Auswirkungen von Wärmebrücken oder Schallnebenwegen bereits innerhalb der frühen Planungsphase abschätzen zu können. Die Bauteilfügungen sind so ausgebildet, dass im Anschlussbereich mindestens die gleiche Feuerwiderstandsfähigkeit wie für die flächigen Bauteile erreicht wird und so die geforderte Begrenzung zur Ausbreitung von Feuer und Rauch für die gesamte Konstruktion gegeben ist.

Anzumerken bleibt, dass die aufgeführten Kennwerte als Planungsinstrument anzusehen sind und im objektspezifischen Nachweis unter Kenntnis der realen Ausführung, Abmessung und weiterführender Randbedingungen jeweils abschliessend zu prüfen sind.

5. «Ausblick» – weiteres Vorgehen – Aktualisierung

Als online-Datenbank wird «dataholz.eu» auch über das Forschungsprojekt hinaus fortlaufend hinsichtlich bautechnischer und baurechtlicher Neuerungen aktualisiert und um weitere Bauteile, Bauteilfügungen und Referenzprojekte ergänzt. So werden bis Ende 2021 ca. 30 weitere wichtige Detailpunkte - darunter auch Attiken mit Dachüberständen, sowie Trauf- und Ortgangdetails - online gestellt. Ferner sollen auch Sonderpunkte, wie Anschlüsse an Dachterrassen, Fenster-/Türanschlüsse, Loggien, Balkone und Anschlüsse an Stahlbetonbauteile bearbeitet werden. Bestehende Referenzprojekte werden zukünftig um den relevanten Detailpunkt «Trennwand – Trenndecke» ergänzt.

Die zukünftige Erweiterung der Datenbank zur «BIM-fähigen» Anwendung soll in einem gesonderten Schritt erfolgen.

Dieser Beitrag basiert auf dem gemeinsam mit Manfred Stieglmeier verfassten Text, der auf dem 12. Europäischem Kongress EBH 2019 in Köln vorgestellt wurde. Einige Aktualisierungen sind seitens der Autorin erfolgt.