

Load-bearing behaviour of partially threaded screws in hardwood

Elisabet Kuck and Carmen Sandhaas

Introduction

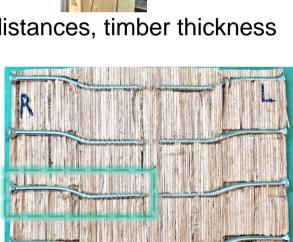
Karlsruhe Institute of Technology

- Today: complex buildings
 - Taller constructions, larger spans, higher loads
- Solutions for MORE efficient buildings
 - Hardwood: high potential construction material
- Project hardwood_joint
 - Innovative solutions for connection design
 - Knowledge gap: hardwood → softwood?
 - → Use full potential of hardwood members
 - → Obtain high-performance connections

[pollmeier.com

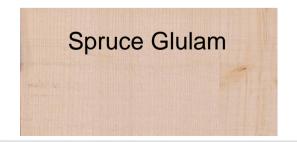
Challenges

- Connection behaviour
 - Failure modes
- Appropriate design rules
 - Load-bearing capacity
 - Geometric conditions

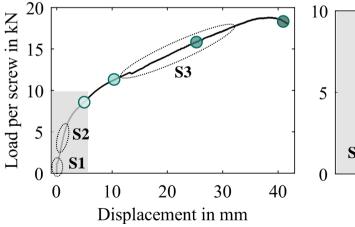

- ductility criterion
- $F_{V.R}$
- spacing, edge distances, timber thickness

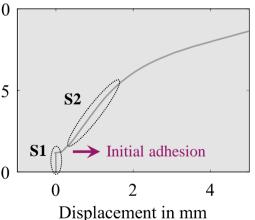
- Single screws (Multi-stage tests)
 - Deformation process of screws
 - Initial adhesion
- Groups of screws

Materials


- Partially threaded self-tapping screws:
 - Predrilled insertion 8x160/80mm, countersunk head
 - Non predrilled insertion 8x160/100mm, washer head

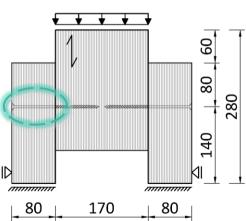
Wood species and products



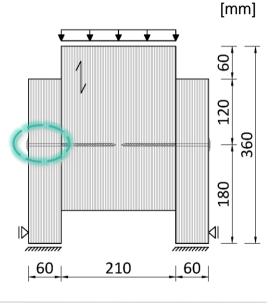


Multi-stage tests

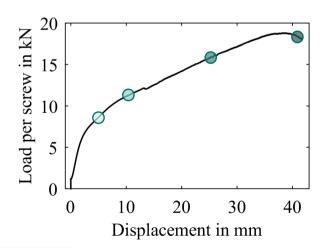
- Single-shear connection tests
- Test termination after reaching displacement stages
 - 5, 10, 25 mm and failure


- Initial adhesion = Load at detaching point
- Stiffness and connection behavior: section S1 – S3

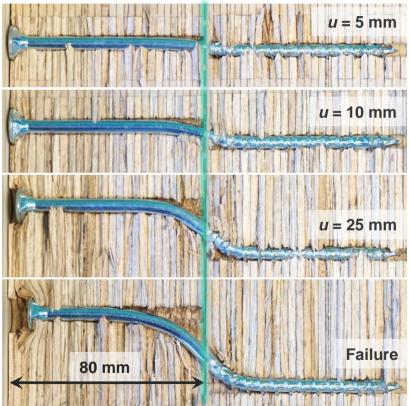
Test setup



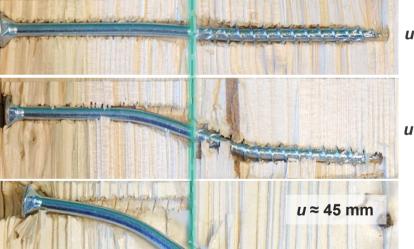
predrilled



non predrilled

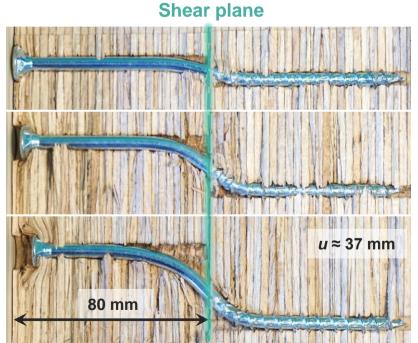

Results in Beech LVL

- Incremental deformation process
 - Plastic hinges starting at u = 10mm
 - Larger displacements: head pull-in
 - Difference: shank and thread



softwood

hardwood


Shear plane

u = 10 mm

Failure

Elisabet Kuck
KIT - Timber Structures and Building Constructions

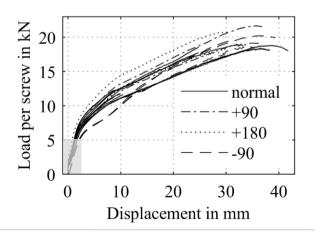
80 mm

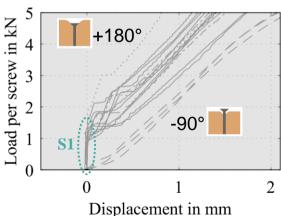
Initial adhesion

■ Prestress of screws → adhesive forces in shear plane

Manual modification of screw insertion

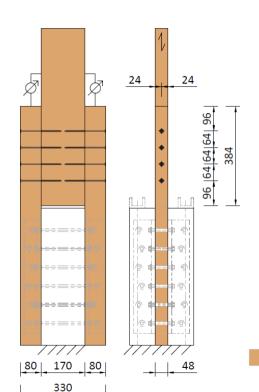
screw 90°/180° overtightened


+90° / +180° →



screw 90°/180° turned back

-90° / -180° →


Results of predrilled screws

Groups of screws

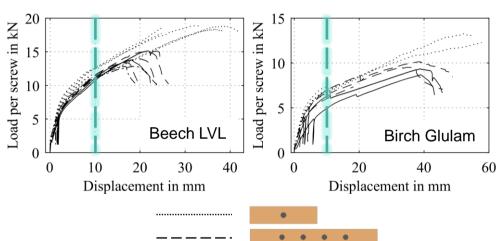
Karlsruhe Institute of Technology

- Test setup
 - Beech LVL & Birch Glulam
 - Single shear connections
 - Geometry

	distance		in mm
predrilled	a_1	8 <i>d</i>	64
	a_2	3 <i>d</i>	24
	a _{3.t}	12 <i>d</i>	96
pr	a _{4,c}	3 <i>d</i>	24
þ	a_1	15 <i>d</i>	120
non predrilled	a_2	7 <i>d</i>	56
n ed	$a_{3,\mathrm{t}}^{-}$	20 <i>d</i>	160
pr	a _{4.c}	7 <i>d</i>	56

One row

Two rows



Groups of screws

Results for predrilled screws

Load per screw	Beech LVL	Birch Glulam
and shear plane	Load in kN at $u = 10 \text{ mm}$	
multi-stage tests	12.0	7.02
• • • •	11.4	6.59
• • • •	10.9	5.63
F _{V,R}	9.69	5.74

- F_{V,R} calculated with input parameters
 - Tests: f_h , M_y , f_{ax} , f_{head}
 - Rope effect min (100% F_V ; 25% F_{ax})

Failure modes

- Splitting in grain direction
- Tension perp. to grain in middle member, followed by block-shear failure (birch glulam)

Screw failure in shear plane or plastic hinge

Conclusion

- In general: Current design rules are appropriate for hardwood
- Durability of initial adhesion is debatable
- Non-predrilled screw insertion in hardwood is difficult
 - → Challenge on site
 - → Predrilling is recommended
- Prevent failure perp. to grain of the middle member
- Ductile behaviour: u = 10 mm for screw connections should be achieved
 - → Adjustment of spacing a₁
 - → Guarantee plastic hinges

Thank you for your attention!

ForestValue

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

This work has been carried out within the project hardwood_joint that is supported under the umbrella of ERA-NET Cofund ForestValue by BMLFUW (AT), ADEME (FR), FNR (DE) and Vinnova, Swedish Energy Agency and Formas (SE). ForestValue has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 773324.