Sporthalle Waldau

Benjamin Eisele müllerblaustein HolzBauWerke GmbH Blaustein, Deutschland

Sporthalle Stuttgart-Waldau

1. Topographie und Raumprogramm

Abbildung 1: Der kompakte Baukörper der neuen Sporthalle Waldau schiebt sich ins Gelände. Die gestaltete Holzfassade erhält einen kontrastreichen Akzent an der Südecke der Halle, wo der Haupteingang als zurückversetzter und verglaster Bereich ins Auge fällt. Er führt in ein großzügiges Foyer, von dem aus alle Funktionen der Sporthalle auf kurzem Wege erschlossen werden. (Foto: Achim Birnbaum Architektur Fotografie)

Die im Herbst 2020 fertiggestellte Dreifachsporthalle liegt im Zentrum des Sport- und Erholungsgebiets Waldau, des zweitgrößten Sportareals in Stuttgart. Das Baugrundstück befindet sich direkt am Georgiiweg, der zentralen Ost-Westachse des Sportparks. Die Halle ist als kompakter kubischer Baukörper im Nordosten des Baufelds angeordnet und parallel zum Georgiiweg und zu den angrenzenden Sportplätzen ausgerichtet. Sie ist so in die nach Norden ansteigende Topographie integriert, dass nur ein Teil des Bauvolumens in Erscheinung tritt. Dadurch wird eine maßstabsgerechte Einfügung der großen Baumasse in die Umgebung erreicht. Die Halle ist vom Georgiiweg abgerückt, sodass sich im Süden ein angemessener Vorbereich ergibt. Die weitere Planung sieht eine Einbeziehung des Straßenraums in die Platzfläche vor. Der Freifläche im Westen der Sporthalle kommt einerseits die wichtige Aufgabe eines Bindeglieds zur benachbarten «Eiswelt» zu, andererseits dient sie als «Action-Platz» mit vielfältigen Sportmöglichkeiten.

Die Sporthalle ist sehr übersichtlich und klar strukturiert, sämtliche Hallenfunktionen sind auf einer Ebene angeordnet. Von Süden nach Norden sind vier Raumzonen erkennbar: Die erste Raumzone mit Haupteingang und Foyer, Multifunktionsraum, Indoor-Bewegungslandschaft und den zugeordneten Nebenräumen, die zweite, zentrale Raumzone mit der Dreifeldhalle und den Zuschauertribünen, die dritte Raumzone mit den Geräteräumen, den Lehrerumkleiden, dem Regieraum und dem Kraftraum und die vierte Raumzone mit den Umkleidebereichen und Technikflächen. Nördlich der Umkleiden befindet sich die Tiefgarage mit einem direkten Hallenzugang.

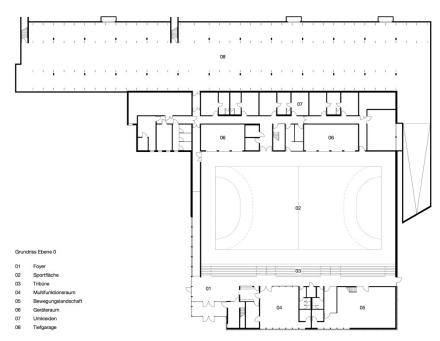


Abbildung 2: Grundriss Ebene 0 (Zeichnung: Glück + Partner GmbH)

Eine zur Halle hin offene Flurzone verbindet das Foyer mit den Zuschauerbereichen auf der einen und mit dem Multifunktionsraum und der Indoor-Bewegungslandschaft auf der anderen Seite. Als Tribüne dienen drei Sitzstufen, die auf der Hallenebene beginnen. Damit wird die gewünschte Nähe der Zuschauer zum Spielfeld gewährleistet. Die Indoor-Bewegungslandschaft ist wie der Multifunktionsraum zur Flurzone teilweise verglast, nutzt die Raumvolumina über den Nachbarräumen und staffelt sich über mehrere Ebenen. Eine sehr flach geneigte Rampe überwindet die Höhe der drei Sitzstufen. Sie führt hinunter zur Hallenebene und zu den Umkleidebereichen auf der Nordseite. Im rückwärtigen Bereich ist die Halle zweigeschossig, in der oberen Ebene befinden sich neben den Umkleiden für den Außenbereich auch Büroräume für die Sportvereine.

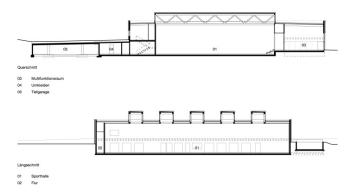


Abbildung 3: Querschnitt (oben) und Längsschnitt (unten) (Zeichnungen: Glück + Partner GmbH)

Entwurfsgestaltung 1.1.

Die Form des Neubaus entwickelten die Architekten aus den unterzubringenden Funktionen, den sich daraus ergebenden statischen Anforderungen sowie aus dem Wunsch nach einer optimalen Versorgung der Halle mit Tageslicht. Herausgekommen ist ein Gebäude mit Abmessungen von 58 m Länge, 50 m Breite und 10,50 m Höhe. Der Neubau ist als Mischkonstruktion konzipiert, wobei aus Gründen der Nachhaltigkeit vor allem Holz verwendet wurde. Lediglich die erdberührten Bauteile sind aus Stahlbeton.

Die Sporthalle ist im Bereich des Hallenbaukörpers als Holzskelettbau aus Buchen-Furnierschichtholz(FSH)-Stützen sowie Brettschichtholz(BSH)-Stützen und -Trägern konzipiert. Die Außenwände sowie die Wände der Anbauten an die Sporthalle mit Büros, Umkleiden, Multifunktionsraum und Bewegungslandschaft wurden in Holzrahmenbauweise ausgeführt.

Für die kammartig geformte Konstruktion des Dachtragwerks haben die Planer ebenfalls Buchen-FSH, kurz BauBuche, gewählt – mit dem Ziel, möglichst schlanke Querschnitte und dadurch geringe statische Höhen zu erhalten. Gebildet wird es aus zehn Fachwerkträgern, die paarweise zu kastenähnlichen Raumtragwerken verbunden wurden und 30,25 m überspannen. Die Dachflächen der Halle zwischen und neben den Sheddach-Konstruktionen sowie die der Anbauten bestehen aus Balkenlagen aus Konstruktionsvollholz (KVH) bzw. Brettschicht(BS)-Holz mit OSB-Beplankung.

Abbildung 4: Sowohl für die Stützen als auch für das Dachtragwerk kam Buchen-Furnierschichtholz zum Einsatz. Die schlanken Querschnitte, die hellen Farben im Gebäudeinnern und das über die sheddachartigen Dachkonstruktionen einfallende Tageslicht sorgen für eine freundliche Atmosphäre und optimale Bedingungen beim Sport. (Foto: Achim Birnbaum Architektur Fotografie)

2. Kammartig geformtes Dachtragwerk für viel Licht

Dreifach-Sporthallen mit über 30 m Spannweite wurden bisher meist als Stahlbau ausgeführt. Durch die Verwendung von BauBuche lässt sich eine solche Konstruktion jedoch ohne weiteres in einen ebenso leistungsfähigen Ingenieurholzbau überführen, wie die Sporthalle in Waldau zeigt. Hier wurde das Hallentragwerk aus BauBuche-Stützen und – Fachwerkträgern in traditioneller Zimmermannskonstruktion ausgeführt. Fachwerkstäbe und Stützenabmessungen konnten so schlank bemessen werden, dass die Konstruktion durchaus mit der filigranen Erscheinung eines Stahlbaus vergleichbar ist. In Kombination mit klassischen Holzkonstruktionen, wie dem Holzrahmenbau, ist ein nachahmenswertes Leuchtturmprojekt entstanden und kann mit der sichtbar belassenen Holzskelettkonstruktion das Innovationspotential des Werkstoffs Hartholz im Holz- und Hallenbau deutlich machen.

Abbildung 5: Die paarweise zu rund 3,40 m breiten, kastenähnlichen Raumtragwerken verbundenen Fachwerkbinder aus Buchen-Furnierschichtholz überspannen rund 30 m. (Foto: Achim Birnbaum Architektur Fotografie)

Fachwerkträger im Doppelpack schaffen spielend große Spannweite

Für die 2,80 m hohen Fachwerkträger wurde BauBuche der Festigkeitsklasse GL 75 verwendet. Die Konstruktion bilden 28 cm breite und 32 cm hohe Ober- und Untergurte, die mit einer parabelförmigen Überhöhung von 9 cm gefertigt wurden sowie 28 cm breite Fachwerkdiagonalen, die von außen zur Bindermitte hin mit 20 cm, 16 cm und 12 cm unterschiedlich hoch dimensioniert sind. Eingeschlitzte Bleche und Stabdübel stellen die zug- und druckfesten Verbindungen der Fachwerkknoten her. Shedsparren (b/h: 16 cm x 32 cm), ebenfalls aus Buchen-FSH, verbinden die Fachwerke an den Stirnseiten jeweils an den Ober- und Untergurten. Hier sorgen spezielle Stahlanschlussteile mit Vollgewindeschrauben für den biegesteifen Anschluss. Eine V-förmige Verstrebung steift den Rahmen hier zusätzlich aus.

Darüber hinaus erhielten die etwa 30,25 m langen und 3,40 m breiten Sheddach-Doppelfachwerke an den Seiten bis zu einer Höhe von 80 cm und obenauf über die gesamte Länge eine 10 cm dicke, weiß lasierte aufgeschraubte Brettsperrholz(BSP)-Platte. Dabei fungiert die Dachplatte als aussteifende Scheibe. Sie nimmt die in den Fachwerkträgern wirkenden Biege- und Normalkräfte auf und sichert die Querschnitte gegen Verdrehen und Verschieben. Diese in 3-m-Stücken verlegten BSP-Dachplatten wurden an den Stößen (quer zu den Obergurten) ausgefräst und über eingelegte OSB-Streifen zu Dachscheiben verbunden.

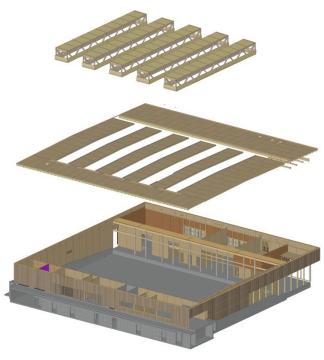


Abbildung 6 (links): Die endmontierten Raumtragwerke erhielten über die gesamte Länge seitlich und als Dach aufgeschraubte BSP-Platten. Die Aufdoppelung auf einem der Obergurte sorgt für das Quergefälle der Dachfläche zur Entwässerung. (Foto: müllerblaustein HolzBauWerke GmbH)
Abbildung 7 (rechts): Explosionszeichnung (Foto: müllerblaustein HolzBauWerke GmbH)

Einer der beiden Obergurte eines jeden Doppelfachwerks erhielt zudem über die gesamte Binderlänge eine KVH-Aufdoppelung mit quer zum Binder geneigter Oberseite. Auf den beiden Obergurten verlegt, erreicht die jeweilige Dachplatte dann das erforderliche 2%-Quergefälle zur Entwässerung. An den Stirnseiten schließt ein entsprechend zugeschnittener Holzkeil aus KVH die Lücke zwischen dem oberen BauBuche-Shedsparren und der BSP-Dachplatte. Diagonalverschraubungen sorgen hier für den biegesteifen Anschluss und spannen die drei Bauteile zusammen.

Aussteifung des Holztragwerkes ohne Stahldiagonalen

Die Balkenlagen aus KVH des Dachtragwerks spannen zum einen zwischen den Sheddach-Konstruktionen und beidseitig daneben über die Hallenenden. Sie erhielten eine Beplankung aus 30 mm dicken OSB-Platten Letztere sind an den Stößen über Deckleisten zu statisch wirksamen Scheiben verbunden. Die 6,20 m bzw. 8,25 m langen, vorgefertigte Elemente der Dachkonstruktion der Sporthallen-Schmalseiten liegen auf den Holzrahmenbau(HRB-Außenwänden) sowie auf seitlich auf den Raumfachwerken aufgebrachten Auflagerhölzern auf. Die übrigen Dachelemente überspannen die 4,15 m zwischen den Raumfachwerken und liegen als Einfeldträger ebenfalls auf den seitlich montierten Auflagerhölzern.

Für die nördlichen und südlichen Anbauzonen wurde BSH für die Balkenlagen (b/h: $12 \text{ cm} \times 32 \text{ cm}$) verwendet, die ebenfalls mit 30 mm dicken OSB-Platten beplankt und zu Dachscheiben verbunden worden sind. Hier bleibt die Balkenlage zudem sichtbar. Diese 6,40 m bzw. 10 m langen, vorgefertigten Elemente spannen von den HRB-Außenwänden zu den 3,90 m bzw. etwa 6,50 m hohen BauBuche-Stützen (b/h: $28 \text{ cm} \times 20 \text{ cm}$ bzw. 28 cm) und BSH-Trägern der Skelettkonstruktion im Bereich der Sporthallen-Längsseiten. Den vom Foyer abgehenden Flurbereich wiederum überspannen 10 cm dicke flurbreite BSP-Platten von 7 m bis 14 m Länge.

Die Aussteifung des Holztragwerks gegen horizontale Lasten aus Schiefstellung und Wind wird sowohl über die Dachscheibe als auch über die Holzwandscheiben ohne Einsatz von Stahlauskreuzungen gewährleistet.

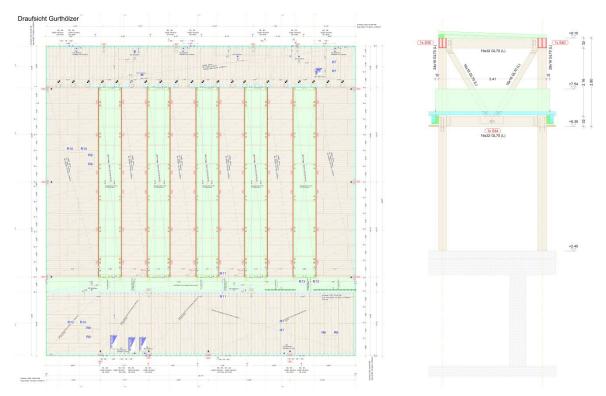


Abbildung 8 (rechts): Dachaufsicht. Die kastenähnlichen Raumfachwerke sorgen zusammen mit den auf der übrigen Dachfläche verlegten OSB-beplankten Balkenlagen für die horizontale Aussteifung. (Zeichnung: müllerblaustein HolzBauWerke GmbH)

Abbildung 9 (links): Detailzeichnung der Auflagerung der Raumtragwerke auf den BauBuche-Stützen. (Zeichnung: müllerblaustein HolzBauWerke GmbH)

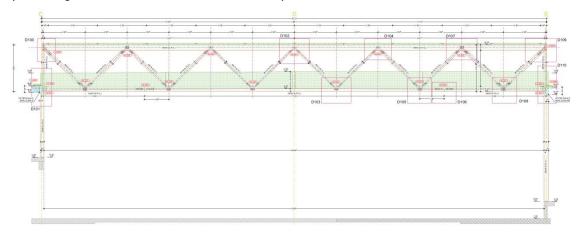


Abbildung 10: Die in sich stabilen und damit selbsttragenden Doppelfachwerke ruhen auf äußerst schlanken BauBuche-Stützen, die je nach Gebäudeseite unterschiedliche Längen aufweisen. (Zeichnung: müllerblaustein HolzBauWerke GmbH)

3. Transport und Montage

Die Realisierung des Projekts gelang mit Hilfe einer durchgängigen 3D-Planung, die sowohl einen weitreichenden Vorfertigungsgrad sowie just-in-time aufeinander getaktete Transport- und Montageprozesse ermöglichte. Dadurch fiel auch die Bauzeit vergleichsweise kurz aus.

Die Montage der Kastenträger erfolgte in den Fertigungshallen der müllerblaustein Holz-BauWerke. Um die BauBuche vor Feuchtigkeit und Bewitterung zu schützen, wurden die Fachwerk-Stäbe und -Gurte nach dem Abbund mehrfach beschichtet und am Ende die vormontierten Kastenträger für Transport und Montage noch zusätzlich in Folie gepackt. So konnten sie stückweise per Lkw zur Baustelle gebracht, per Kran beidseits auf den Wandelementen bzw. den darin integrierten BauBuche-Stützen abgesetzt und mit Abstand zueinander montiert werden.

Abbildung 11 bis 15: Die endmontierten Raumtragwerke wiegen jeweils etwa 22 Tonnen. Per Lkw als Sondertransport nach Stuttgart-Waldau gebracht, wurden sie direkt vor Ort mit einem 500 t-Spezialkran eingehoben und angeschlossen. (Fotos: müllerblaustein HolzBauWerke GmbH)

4. Rundum viel Holz

Die kastenähnlichen Raumtragwerke erhielten eine seitliche Bekleidung aus transluzenten Polycarbonatstegplatten. Diese sorgen für die blendfreie Belichtung in der Halle, die durch tageslichtabhängige und Präsenzmelder gesteuerte LED-Leuchten ergänzt wird. Dank der besonderen Dachkonstruktion konnten die Planer dem Wunsch des Amts für Sport und Bewegung nach möglichst viel Tageslicht in der Halle optimal entsprechen.

Für die Sporthalle wurde eine Holzmenge von rund 750 m³ verbaut, davon 82 m³ BauBuche. Das entspricht einer CO2-Speicherung von über 687 Tonnen. Unterm Strich ist der Neubau ein klimaneutrales Gebäude. Es wurde über das EFRE-Programm (EFRE – Europäischer Fonds für regionale Entwicklung) mit 200.000 Euro vom Land Baden-Württemberg gefördert und soll als Prototyp des Sportstättenbaus «im Ländle» Schule machen.

Autoren:

Susanne Jacob-Freitag, Karlsruhe, und Marc Wilhelm Lennartz, Polch-Ruitsch

5. Bautafel

Bauzeit: April 2019 bis September 2020

Bauherr: Landeshauptstadt Stuttgart,

Amt für Sport und Bewegung, vertreten durch das Hochbauamt,

D-70173 Stuttgart

Projektsteuerung, Projektleitung:

Landeshauptstadt Stuttgart,

Hochbauamt

Architektur, Entwurfsplanung:

Glück + Partner GmbH, D-70197 Stuttgart

Holzbau Vorfertigung, Montage:

müllerblaustein HolzBauWerke GmbH,

D-89134 Blaustein

Tragwerksplanung:

merz kley partner GmbH,

A-6850 Dornbirn

Bauphysik: Gutbrod Bau Physik Ingenieurbüro GmbH,

D- 71706 Markgröningen

Landschaftsplanung:

Glück Landschaftsarchitektur GmbH,

D-70176 Stuttgart

HLS: S Plus Ingenieurgesellschaft mbH,

D-73230 Kirchheim unter Teck